Influence of pulse duration and pulse number in selective RPE laser treatment.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES The therapeutic effect of laser treatment for macular diseases is related to the damage to the retinal pigment epithelium (RPE) and the subsequent restoration of the defect due to RPE proliferation. In contrast to conventional laser treatment, it is possible to damage the RPE selectively and to spare the photoreceptors by using repetitive microsecond laser pulses. It was the aim of the study to investigate the influence of pulse duration and number of pulses on angiographically and ophthalmoscopically visible retinal damage thresholds in order to optimize treatment modalities. STUDY DESIGN/MATERIALS AND METHODS In total, 625 laser lesions with various parameters were applied to the retina in 11 eyes of 6 Chinchilla breed rabbits using an experimental laser system (Nd:YLF at 527 nm). Pulse duration (1.7 microseconds and 200 nanoseconds) and number of pulses (100, 10, and 1 pulses) were varied at a constant repetition rate of 100 Hz. Damage thresholds were determined in terms of ophthalmoscopic and fluorescein angiographic visibility, and the therapeutic window (TW; angiographic ED(50) vs. ophthalmoscopic ED(50)) as well as the safety range (SR; angiographic ED(84) vs. ophthalmoscopic ED(16)) between both thresholds were calculated. Selected laser lesions were evaluated by histology. RESULTS Generally, the ED(50) radiant exposure for angiographic visibility decreases for shorter laser pulses and with an increase in the number of pulses. The TW for both pulse durations (1.7 microseconds and 200 nanoseconds) was wider with 100 pulses than with single pulses. The widest TW was found for 100 pulses at 200 nanoseconds pulse duration (5.9-fold above the angiographic threshold), and the smallest TW with a factor of 1.6 was found for 1.7 microseconds single pulses. In terms of SR, only irradiation with 100 pulses at 200 nanoseconds pulse duration was associated with a ratio >2. Independently of pulse duration, histological examination of laser sites 1 hour after irradiation revealed widely intact photoreceptors, while the underlying RPE was damaged. CONCLUSIONS Pulse duration and number of pulses have a significant influence on RPE damage thresholds and consecutively on TW and SR. Because fundus pigmentation in humans may vary intra- and interindividually by a factor of 2, a large TW and ideally also a large SR should be ensured in a clinical treatment context. In rabbits, the safety range with 200 nanoseconds pulses is higher than with the pulse duration of 1.7 microseconds currently in clinical use. These findings suggest the need for clinical pilot studies to prove whether these results can be transposed to the situation in humans.
منابع مشابه
Optoacoustic real-time dosimetry for selective retina treatment.
The selective retina treatment (SRT) targets retinal diseases associated with disorders in the retinal pigment epithelium (RPE). Due to the ophthalmoscopic invisibility of the laser-induced RPE effects, we investigate a noninvasive optoacoustic real-time dosimetry system. In vitro porcine RPE is irradiated with a Nd:YLF laser (527 nm, 1.7-micros pulse duration, 5 to 40 microJ, 30 pulses, 100-Hz...
متن کاملMonitoring Intracellular Cavitation During Selective Laser Targeting of the Retinal
Selective destruction of the retinal pigment epithelium (RPE) has important applications in the treatment of a range of macular diseases such as diabetic retinopathy, diabetic macular edema or central serous retinopathy. Laser photocoagulation is the established therapeutic modality for treating these disorders. However, heat diffusion during the long exposure times results in an extended zone ...
متن کاملInfluence of Repetition Frequency on Selective Retinal Photocoagulation for Macular Diseases
The conventional retinal photocoagulation treatment uses continuous wave (CW) lasers which results in pathophysiologic thermal environment to the surrounding normal tissues such as neural retina, choroid, and photoreceptors. Selective photodamage of retinal pigment epithelium (RPE), thus sparing photoreceptors can be achieved by using short pulsed lasers. The problem associated with the usage o...
متن کاملInfluence of Interface Thermal Resistance on Relaxation Dynamics of Metal-Dielectric Nanocomposite Materials under Ultrafast Pulse Laser Excitation
Nanocomposite materials, including noble metal nanoparticles embedded in a dielectric host medium, are interesting because of their optical properties linked to surface plasmon resonance phenomena. For studding of nonlinear optical properties and/or energy transfer process, these materials may be excited by ultrashort pulse laser with a temporal width varying from some femtoseconds to some hund...
متن کاملInvestigation of selective retina treatment (SRT) by means of 8 ns laser pulses in a rabbit model.
BACKGROUND It has been shown that selective retina treatment (SRT) using a train of 1.7 microseconds laser pulses allows selective damage of the retinal pigment epithelium (RPE) while sparing the adjacent photoreceptors and thus avoiding laser scotoma. It was the purpose of this work to investigate SRT laser effects with Q-switched pulses of only 8 nanoseconds in duration by evaluating the angi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 34 3 شماره
صفحات -
تاریخ انتشار 2004